Evaluation of hepatotoxic potential of drugs by inhibition of bile-acid transport in cultured primary human hepatocytes and intact rats.
نویسندگان
چکیده
Inhibition of canalicular bile acid efflux by medications is associated with clinical liver toxicity, sometimes in the absence of major liver effects in experimental species. To predict the hepatotoxic potential of compounds in vitro and in vivo, we investigated the effect of clinical cholestatic agents on [3H]taurocholic acid transport in regular and collagen-sandwich cultured human hepatocytes. Hepatocytes established a well-developed canalicular network with bile acid accumulating in the canalicular lumen within 15 min of addition to cells. Removing Ca2+ and Mg2+ from the incubation buffer destroyed canalicular junctions, resulting in bile acid efflux into the incubation buffer. Canalicular transport was calculated based on the difference between the amount of bile acid effluxed into the Ca/Mg2+-free and regular buffers with linear efflux up to 10 min. Hepatocytes cultured in the nonsandwich configuration also transported taurocholic acid, but at 50% the rate in sandwiched cultures. Cyclosporin A, bosentan, CI-1034, glyburide, erythromycin estolate, and troleandomycin inhibited efflux in a concentration-dependent manner. In contrast, new generation macrolide antibiotics with lower incidence of clinical hepatotoxicity were much less potent inhibitors of efflux. An in vivo study was conducted whereby glyburide or CI-1034, administered iv to male rats, produced a 2.4-fold increase in rat total serum bile acids. A synergistic 6.8-fold increase in serum total bile acids was found when both drugs were delivered together. These results provide methods to evaluate inhibitory effects of potentially cholestatic compounds on bile-acid transport, and to rank compounds according to their hepatotoxic potential.
منابع مشابه
Contribution of high basolateral bile salt efflux to the lack of hepatotoxicity in rat in response to drugs inducing cholestasis in human.
Intrahepatic bile acid accumulation due to inhibition of the bile salt export pump (BSEP) has been proposed as a mechanism for drug-induced cholestasis. Many cholestatic drugs do not initiate hepatotoxicity in rats, although they inhibit rat Bsep and cause elevated serum bile acid concentration. In this study, we examined changes in the taurocholate (TC) transport in response to cholestatic dru...
متن کاملExploring BSEP inhibition-mediated toxicity with a mechanistic model of drug-induced liver injury
Inhibition of the bile salt export pump (BSEP) has been linked to incidence of drug-induced liver injury (DILI), presumably by the accumulation of toxic bile acids in the liver. We have previously constructed and validated a model of bile acid disposition within DILIsym®, a mechanistic model of DILI. In this paper, we use DILIsym® to simulate the DILI response of the hepatotoxic BSEP inhibitors...
متن کاملSpecies differences in hepatobiliary disposition of taurocholic acid in human and rat sandwich-cultured hepatocytes: implications for drug-induced liver injury.
The bile salt export pump (BSEP) plays an important role in bile acid excretion. Impaired BSEP function may result in liver injury. Bile acids also undergo basolateral efflux, but the relative contributions of biliary (CLBile) versus basolateral efflux (CLBL) clearance to hepatocellular bile acid excretion have not been determined. In the present study, taurocholic acid (TCA; a model bile acid)...
متن کاملEvaluation of the Endothelin Receptor Antagonists Ambrisentan, Bosentan, Macitentan, and Sitaxsentan as Hepatobiliary Transporter Inhibitors and Substrates in Sandwich-Cultured Human Hepatocytes
BACKGROUND Inhibition of the transporter-mediated hepatobiliary elimination of bile salts is a putative mechanism for liver toxicity observed with some endothelin receptor antagonists (ERAs). METHODS Sandwich-cultured human hepatocytes were used to study the hepatobiliary distribution and accumulation of exogenous taurocholate, ERAs and endogenous bile acids. The molecular mechanisms for find...
متن کاملRitonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes.
Human immunodeficiency virus-infected patients on antiretroviral drug therapy frequently experience hepatotoxicity, the underlying mechanism of which is poorly understood. Hepatotoxicity from other compounds such as bosentan and troglitazone has been attributed, in part, to inhibition of hepatocyte bile acid excretion. This work tested the hypothesis that antiretroviral drugs modulate hepatic b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 76 1 شماره
صفحات -
تاریخ انتشار 2003